YUNZHI LIN

SUMMARY

I am an ECE Ph.D. candidate at Georgia Tech, specializing in integrating computer vision with robotics to address real-world challenges. My expertise includes 6-DoF object pose estimation, object grasping, and human-robot interaction, enriched by collaborations with NVIDIA Research and Meta FAIR.

RESEARCH INTEREST

- Computer Vision: Object Pose Estimation, Object Pose Tracking, Keypoint Tracking, Neural Radiance Field
- Robotics: Object Grasping, Robot Manipulation, Robot Simulation, Human-Robot Interaction

ACADEMIC EXPERIENCE

Georgia Institute of Technology	Atlanta, USA 08/2018 - Present
Ph.D. Candidate & M.S. in ECE	
• University of Alberta	Edmonton, Canada 09/2017 - 12/2017
Research Intern in Applied Nonlinear Control Lab	
• Southeast University	Nanjing, China 09/2014 - 06/2018
B.E. in Automation, Overall GPA: 3.86/4.0 (Rank: 3/104)	

INDUSTRY EXPERIENCE

• Meta AI	Menlo Park, USA 05/2023 - 11/2023
Research Intern in FAIR Accel	
• NVIDIA Research	Remote, USA 05/2022 - 12/2022
Research Intern in Learning and Perception Research Group	
• NVIDIA Research	Remote, USA 05/2020 - 05/2021
Research Intern in Learning and Perception Research Group	

RESEARCH EXPERIENCE

Generalized Object Pose Tracking

05/2023 - 11/2023

Advisor: Kevin Liang, Fu-Jen Chu, Yipu Zhao, Xingyu Chen, Weiyao Wang, Hao Tang, Patricio A. Vela, Matt Feiszli Ego-HowTo Team, Meta FAIR Accel

- Developed a streamlined pipeline combining video segmentation, uncertainty-aware keypoint refinement, and structure from motion, effectively tracking 6-DoF poses from short-term monocular RGB video
- Generated a large-scale photo-realistic synthetic dataset of 40K clips (4M frames) using BlenderProc2, including RGB/depth/mask/normal/pose annotations, facilitating object pose tracking in dynamic settings

• Neural Radiance Fields for Robust Pose Estimation

05/2022 - 09/2022

Advisor: Thomas Müller, Jonathan Tremblay, Bowen Wen, Stephen Tyree, Alex Evans, Patricio A. Vela, Stan Birchfield Learning and Perception Research Group, NVIDIA Research

- Developed a parallelized, momentum-based optimization method using NeRF models to estimate 6-DoF poses from monocular RGB input
- Achieved improved generalization and robustness on both synthetic and real-world benchmarks

• Human-Robot Interaction: Playing Jigsaw Puzzles with A Robot

06/2021 - 12/2022

Advisor: Patricio A. Vela

Intelligent Vision and Automation Laboratory, Georgia Institute of Technology

- Developed a human-robot system that allows a robot to interact and play jigsaw puzzles with human players
- Created a cost-effective robot platform (\$1K) with RealSense D415 and Dynamixel servomotor
- Funded by National Science Foundation (NSF) for research and development [#2026611]

Category-level Object Pose Estimation and Tracking

11/2020 - 09/2021

Advisor: Jonathan Tremblay, Stephen Tyree, Patricio A. Vela, Stan Birchfield

Learning and Perception Research Group, NVIDIA Research

- Developed a keypoint-based RGB-only 6-DoF and size pose estimator for category-level objects
- Extended to support robust object pose tracking with uncertainty estimation
- SOTA results on the Objectron benchmark, improving average precision at 0.5 3D IoU from 72% to 80%
- Integrated into [NVIDIA Isaac Robot Operating System (ROS)]

• Multi-level Scene Understanding

05/2020 - 10/2020

Advisor: Jonathan Tremblay, Stephen Tyree, Patricio A. Vela, Stan Birchfield Learning and Perception Research Group, NVIDIA Research

- Proposed a multi-level robotic scene understanding system, including dense 3D reconstruction, shape estimation and fitting of objects with primitive shapes, and full 6-DoF pose estimation of known object instances

Object Grasping via Primitive Shapes

02/2019 - 05/2020

Advisor: Patricio A. Vela

Intelligent Vision and Automation Laboratory, Georgia Institute of Technology

- Developed an automated strategy to generate primitive shape data in the V-REP simulation
- Designed a grasping pipeline that segments objects from depth input, identifies optimal shape parameters through shape fitting, and selects and executes the most feasible grasp
- Achieved over 93% success rate on static grasping task using a 7-DoF robotic arm

PATENTS

• Object pose tracking from video images

Yunzhi Lin, Jonathan Tremblay, Stephen Tyree, Stan Birchfield

Number: US20240005547A1

• Single-stage category-level object pose estimation

Stan Birchfield, Jonathan Tremblay, Yunzhi Lin, Stephen Tyree

Number: US20220277472A1

• Determining a three-dimensional representation of a scene

Yunzhi Lin, Jonathan Tremblay, Stephen Tyree, Stan Birchfield

Number: US20220068024A1

SELECTED PUBLICATIONS [Google Scholar]

Preprints

[P1]. Primitive Shapes Recognition for Object Grasping

Yunzhi Lin, Chao Tang, Fujen Chu, Ruinian Xu, Patricio A. Vela *arXiv*:2201.00956

[P2]. OmniPose6D: Towards Short-Term Object Pose Tracking in Dynamic Scenes from Monocular RGB Input

Yunzhi Lin, Kevin Liang, Fu-Jen Chu, Yipu Zhao, Xingyu Chen, Weiyao Wang, Hao Tang, Patricio A. Vela, Matt Feiszli

In Submission

Conferences

[C1]. WDiscOOD: Out-of-Distribution Detection via Whitened Linear Discriminative Analysis

Yiye Chen, **Yunzhi Lin**, Ruinian Xu, Patricio A. Vela *International Conference on Computer Vision (ICCV 2023)*

[C2]. KGNv2: Separating Scale and Pose Prediction for Keypoint-based 6-DoF Grasp Pose Synthesis on RGB-D input

Yiye Chen, Ruinian Xu, **Yunzhi Lin**, Patricio A. Vela *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023)*

[C3]. Parallel Inversion of Neural Radiance Fields for Robust Pose Estimation

Yunzhi Lin, Thomas Müller, Jonathan Tremblay, Bowen Wen, Stephen Tyree, Alex Evans, Patricio A. Vela, Stan Birchfield

IEEE International Conference on Robotics and Automation (ICRA 2023)

[C4]. Keypoint-GraspNet: Keypoint-based 6-DoF Grasp Generation from the Monocular RGB-D input Yiye Chen, Yunzhi Lin, Patricio A. Vela

IEEE International Conference on Robotics and Automation (ICRA 2023)

[C5]. Keypoint-based Category-level Object Pose Tracking from an RGB Sequence with Uncertainty Estimation

Yunzhi Lin, Jonathan Tremblay, Stephen Tyree, Patricio A. Vela, Stan Birchfield *IEEE International Conference on Robotics and Automation (ICRA 2022)*

[C6]. Single-Stage Keypoint-based Category-level Object Pose Estimation from an RGB Image Yunzhi Lin, Jonathan Tremblay, Stephen Tyree, Patricio A. Vela, Stan Birchfield

IEEE International Conference on Robotics and Automation (ICRA 2022)

[C7]. Multi-view Fusion for Multi-level Robotic Scene Understanding

Yunzhi Lin, Jonathan Tremblay, Stephen Tyree, Patricio A. Vela, Stan Birchfield *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021)*

[C8]. A Joint Network for Grasp Detection Conditioned on Natural Language Commands

Yiye Chen, Ruinian Xu, **Yunzhi Lin**, Patricio A. Vela

IEEE International Conference on Robotics and Automation (ICRA 2021)

[C9]. Using Synthetic Data and Deep Networks to Recognize Primitive Shapes for Object Grasping

Yunzhi Lin*, Chao Tang*, Fujen Chu, Patricio A. Vela

IEEE International Conference on Robotics and Automation (ICRA 2020)

[C10]. Blind Deblurring Using Discriminative Image Smoothing

Wenze Shao, **Yunzhi Lin**, Bingkun Bao, Liqian Wang, Qi Ge, Haibo Li *Pattern Recognition and Computer Vision (PRCV 2018)*

Journals

[J1]. SGL: Symbolic Goal Learning in a Hybrid, Modular Framework for Human Instruction Following

Ruinian Xu, Hongyi Chen, Yunzhi Lin, Patricio A. Vela

IEEE Robotics and Automation letters

[J2]. Gradient-based discriminative modeling for blind image deblurring

Wenze Shao, **Yunzhi Lin**, Yuanyuan Liu, Liqian Wang, Qi Ge, Bingkun Bao, Haibo Li *Nerocomputing*

Journal of Mathematical Imaging and Vision

Workshops

[W1]. NViSII: A Scriptable Tool for Photorealistic Image Generation

Nathan Morrical, Jonathan Tremblay, **Yunzhi Lin**, Stephen Tyree, Stan Birchfield, Valerio Pascucci, Ingo Wald

International Conference on Learning Representations Workshop (ICLR workshop 2021)

TEACHING EXPERIENCE

Teaching Assistant, ECE 3005 Professional and Technical Communications, Gatech

Spring 2023

• Teaching Assistant, ECE 4560 Introduction to Automation & Robotics, Gatech

Fall 2022

ACADEMIC SERVICE

- Conference reviewer for CoRL'19, ICRA'21-24, IROS'21-23, ECCV'22
- Journal reviewer: Neurocomputing, IEEE Robotics and Automation Letters, IEEE/ASME Transactions on Mechatronics, IEEE/CAA Journal of Automatica Sinica, IEEE Computer Graphics and Applications, IEEE Transactions on Circuits and Systems for Video Technology, IEEE Transactions on Automation Science and Engineering

HONORS AND AWARDS

• NVIDIA Patent Award (3x), NIVIDA Corp.

04/2021-03/2022

• Outstanding Graduates (top 5%), Southeast University

06/2018

• National Undergraduate Exchange Scholarship, China Scholarship Council

06/2017

• National Scholarship (top 3%), Southeast University

09/2015

SKILLS

• **Programming Languages:** C/C++, Python, Matlab

• Softwares & Tools: OpenCV, V-REP, ROS, Caffe, TensorFlow, PyTorch