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Abstract. Blind image deblurring or deconvolution is a very hot topic towards
which numerous methods have been put forward in the past decade, demon-
strating successful deblurring results on one or another benchmark natural image
dataset. However, most of existing algorithms are found not robust enough as
dealing with images in specific scenarios, such as images with text, saturated
area or face. In this paper, a robust blind deblurring approach is presented using
relative total variation as a regularization penalty. To the best of our knowledge,
none of previous studies have followed this modeling principle. The underlying
idea is to pursue more accurate intermediate image for more reliable kernel
estimation by harnessing relative total variation which could extract salient
structures from textures and suppress ringing artifacts and noise as well. An
iterative estimating algorithm is finally deduced for alternatively update of sharp
image and blur kernel by operator splitting and augmented Lagrangian.
Extensive experiments on a challenging synthetic dataset and real-world images
as well are conducted to validate the new method with comparison against the
state-of-the-art approaches from 2006 to 2014. Based on both PSNR and SSIM
and a non-reference evaluation metric, the results demonstrate that our approach
is comparatively more effective to process blurred images in more challenging
scenarios.
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1 Introduction

Motion blur is an artifact caused by the movement of the camera sensor during the
exposure, which leads to significant information loss of the picture. This problem has
been increasingly important since the widespread use of the hand-held cameras, par-
ticularly the smart phones.
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Generally, based on the assumption that the motion blur is shift-invariant, the blur
process could be modeled as follows:

y ¼ k � xþ n ð1Þ

where x is the latent sharp image, k is the blur kernel, n is the image noise, * denotes
convolution and y is the observed blur image.

Thus, motion deblurring could be simplified to a blind deconvolution task, i.e.,
recovering both the latent image x and the kernel k from the observed blurry image y. It
is apparent that the task is mathematically an ill-posed problem since different sharp
images in combination with distinct blur kernels may produce the same blurry images.
Nowadays, most existing methods are formulated in the Bayesian framework to solve
this problem, specifically including two inference principles: Variational Bayes
(VB) and Maximum a Posteriori (MAP). The proposed approach in this paper falls into
the MAP considering its flexibility in both modeling and inference.

Recent years has witnessed much progress in blind image deblurring. One group of
researchers [1, 2, 4, 7–11, 22, 24] concentrates on seeking appropriate sparse priors of
x and k. Another group [12–14] combines the salient edge selection with simple
Gaussian prior to speed up the computational process. Although many approaches
seem to perform well on some particular dataset, e.g., provided by Fergus et al. [1],
Levin et al. [2], they usually fail in getting satisfying results under more complex
situations, such as images of text, face, natural environment, or dark scenes with light
saturation. The recent comprehensive comparative study [5] has showed that the
state-of-the-art approaches from 2006 to 2014 are not robust enough to suit all these
cases.

In this paper, a robust blind deblurring approach is presented using relative total
variation as a regularization penalty. Relative Total Variation (RTV) proposed by Xu
et al. [3] is a tricky yet interesting method to extract salient structures from the image.
To the best of our knowledge, none of previous studies have followed this modeling
principle. The underlying idea is to pursue more accurate intermediate latent image
x for reliable kernel estimation by harnessing RTV which may extract salient structures
from textures and suppress ringing artifacts and noise as well. To be noted that, as in
Cho et al. [12] and Xu and Jia [13] edge enhancing via shock filtering is also adopted
during updating the latent image x. In the blur kernel estimation stage, an L0-L2 prior is
imposed on the kernel just following one of our previous work [11] which is found
adapt the proposed approach in this paper quite well. With above modeling processes,
an iterative estimating algorithm is finally deduced for update of sharp image and blur
kernel in an alternative manner by operator splitting and augmented Lagrangian. With
estimated blur kernel, a non-blind deconvolution developed from the hyper-Laplacian
prior [4] is adopted for the final restoration of the clear image. Extensive experiments
on a comprehensive synthetic dataset including text, face and low illumination images
and real-world images as well are conducted to validate the new method with com-
parison against the state-of-the-art approaches from 2006 to 2014. Based on both PSNR
and SSIM and a non-reference evaluation metric [6] developed from the massive user
study, the results demonstrate that our approach is comparatively more effective to
process blurred images in more challenging scenarios.

326 Y. Lin and W. Shao



2 Related Work

To solve the ill-posed problem of blind deconvolution, many previous methods employ
multi-scale framework and impose constraints on not only the latent image but also blur
kernel. For example, Fergus et al. [1] used a variational Bayesian method with a mixture
of Gaussians and exponential prior on the image and kernel respectively. However, this
statistical model is of great complexity and the resulting algorithm is vulnerable to noise.
Shan et al. [7] proposed a piece-wise prior to satisfy the natural power-law of the image.
Nevertheless, the deblurring results were much smooth and had many artifacts. Simi-
larly, Krishnan et al. [8] introduced a normalized L1/L2 prior to distinguish the sharp
image from the blurry one. However, the authors’ claimed discrimination is questionable
since L1/L2 is found fail in distinguishing many natural images. Lately, the L0 prior has
proven to be the most efficient sparse prior. Xu et al. [9] first applied the L0 gradient prior
to the estimation of latent image. Then Pan et al. [10] applied the L0 priors on both the
gradient and intensity domains to the text image. Shao et al. [11] proposed an
easy-to-implement and effective bi-L0-L2 prior on both the sharp image and blur kernel.
While these algorithms obtain good results on one or another particular dataset, their
performance is not robust enough to adapt diverse imaging scenarios. Recently, Pan et al.
[18] further proposed to apply the L0 priors on both the gradient domain and the dark
channel and achieved improved deblurring performance.

To avoid the negative influence of the textures or saturated areas on kernel esti-
mation, another group of researchers employs smoothing/enhancing filters for salient
edge selection. For example, Cho et al. [12] used bilateral filter and shocking filter; Xu
and Jia [13] applied Gaussian filter and shocking filter, together with the Iterative
Support Detection (ISD) to select salient edges. Recently, Pan et al. [14] proposed to
remove the outliers in the saturated area to optimize the kernel estimation.

There are also studies making contributions to other aspects of motion deblurring.
Whyte et al. [15] proposed a geometrically consistent model to take non-uniform blur
into consideration. However, their performance is not satisfying within synthetic uni-
form dataset. Hu and Yang [16] selected a best region patch instead of the whole image
for kernel estimation. Hu et al. [17] also used light streaks to predict the kernel in the
dark scenario. While these novel algorithms expand the existing methods, none of them
are competitive compared against other state-of-the-art approaches as surveyed in [5].

3 Robust Blind Kernel Estimation

In this section, we present a robust approach with RTV as the regularization term on the
latent image x, combined with salient edge selection and L0-L2-norm regularized
kernel estimation.

Following model (1), the basic cost function of our method is formulated as

minx;kk k � x� yk k2 þ axRx xð Þþ akRk kð Þ ð2Þ
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where k; ax; ak , are the positive weights; Rx xð Þ;Rk kð Þ represent the regularization term
on x and k respectively. Then, x and k can be solved alternatively by minimizing (2).
Figure 1 shows the flowchart of final algorithm including an outer iteration and two
inner iterations as well as additional salient edge selection step. Besides, a
coarse-to-fine manner is adopted for the sake of avoiding the local minima, which is a
common routine in the MAP-based blind deconvolution [2].

3.1 Intermediate Latent Image Estimation

For the sake of clearness, the relative total variation is firstly introduced here which is
proposed in [3], defined as

X
p

Di;j pð Þ
Li;j pð Þþ e

¼
X

p

P
qðpÞ gp;q ð@i;jxÞq

��� ���
P

q�RðpÞ gp;qð@i;jxÞq
��� ���þ e

ð3Þ

gp;q / expð� ðxp � xqÞ2 þðyp � yqÞ2
2r2

Þ ð4Þ

where i and j represent the horizontal and vertical direction respectively; q belongs to R
(p), the rectangle region centered at pixel p; @ denotes the partial derivative; gp;q is a
correlation weighting function calculating the spatial affinity; e specifies the maximum
size of texture elements, we set it to 0.02 empirically; r controls the spatial scale of the
window.

Considering the MAP framework, we could obtain the intermediate image x by
fixing the kernel k. By omitting the terms not involved in x, the intermediate image
model is transformed to (5):

xiþ 1 ¼ argminx k ki � x� yk k2 þCi
xax

X
p

P
q�RðpÞ gp;q ð@i;jxÞq

��� ���
P
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��� ���þ e
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Fig. 1. Flowchart of the proposed method. L2 and L3 represent the inner iterations. L1 denotes
the outer iterations and is implemented in a multi-scale (coarse-to-fine) framework.
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where 0 � i � I − 1, I is the outer iteration number; Ci
x\1 is a positive continuation

factor which is fixed as 2/3. In this way, the weight of RTV prior diminishes as the
process goes on, resulting in the cost function less constrained.

To solve problem (5), we first rewrite it into a matrix-vector form:

xiþ 1 ¼ argminx k Ki � x� Vy

�� ��2 þCi
xax

X
p

P
q�RðpÞ gp;q ð@i;jxÞq

��� ���
P

q�RðpÞ gp;qð@i;jxÞq
��� ���þ e

ð6Þ

where K �RM�M is the BCCB (block circulant matrix with circulant blocks) blurring
matrix, M is the number of image pixels, and Vy is the vector representation of y. We
adopt the well-known OSAL (operator splitting and augmented Lagrangian) scheme
[11] to solve (6). An auxiliary variable u is introduced to substitute x, thus (6) written as

ðxlþ 1
i ; ulþ 1

i Þ ¼ argminx;u k Ki � x� Vy

�� ��2 þCi
xax
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x
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where 0 � l � P − 1, P is the inner iteration number; cx is a fixed parameter
ensuring the similarity between x and u which is set to 100 empirically; and lx is the
augmented Lagrangian penalty parameter which is updated as

llþ 1
x ¼ llx þ cx xlþ 1

i � ulþ 1
i

� � ð8Þ

When x is fixed, u could be solved by minimizing (9)

ulþ 1
i ¼ argminu ax
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Note that the form of (9) is similar to the cost function (10) in [3], i.e.,

min
S

X
p

Sp � Op
� �2 þ k

Dx pð Þ
Lx pð Þþ e

þ Dy pð Þ
Ly pð Þþ e

� �
ð10Þ

We just set the parameters in (10) as k ¼ 2ax
cx
; O ¼ xþ llx

cx
, and (9) can be then

solved exactly the same as in [3], i.e., in a plug-and-play manner.
Following (6), the intermediate image x can be solved with u provided,

argminx
k
Ci
x

Ki � x� Vy

�� ��2 þ cx
2

xþ 1
cx
llx � uli

����
����
2

ð11Þ
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Due to the BCCB assumption over Ki, (11) can be efficiently solved by applying fast
Fourier transform (FFT) based on the Paseval’s theorem. The expression could be as
follows:

xlþ 1
i = F�1

F kið Þ�F yð Þþ Ci
xcx
2k Fðuli � 1

cx
llxÞ

F kið Þ�F kið Þþ Ci
xcx
2k

0
@

1
A ð12Þ

where F (�) and F�1(�) represent the FFT and the inverse FFT, respectively, ð�Þ denotes
the conjugate operator and 。is an element-wise multiplication operator. Note that to
reduce the ringing artifacts caused by implementation in the frequency domain, one
way is to expand the image and taper discontinuities along image edges, which is a
simple yet effective preconditioning step also mentioned in [1, 11].

3.2 Salient Edge Selection

Edge information is the key to estimate the kernel accurately. The principle has been
validated by many papers [2, 12, 13], that a salient edge does not change much after the
blur process. As Xu and Jia [13] pointed out, if the edge width is smaller than the
kernel size, it may be weakened significantly, thus damaging the kernel estimation.
However, previous edge selection methods have some drawbacks. The bilateral filter
may weaken the salient edge and make them less robust. WLS filter [19] is too weak to
remove the tiny small edges. Many of these edges still remain after the estimating
process. Moreover, the approach of L0 gradient [20] could not effectively distinguish
the small edges from the salient ones, thus removing too many edges. As a result, there
are not enough salient edges for estimation.

We instead adopt the proposed Relative Total Variation (RTV) method [3] to finish
the task. It is found that these small edges often exist in the form of texture in the
image. Thus, RTV is the best method to remove them from the image since the method
is primarily designed to differentiate the texture and structure signals. Note that this
step plays a different role compared with our previous step, which utilizes RTV prior as
a penalty term. The difference is illustrated in Fig. 1.

Cho et al. [12] suggested that the artifacts result from edge blurring. Therefore, we
further employ the shocking filter to enhance the remaining edges after salient edges
have been selected, which is to reduce the influence of the blur. Farbman et al. [19]
suggested that sharpening also leads to halos and gradient reversals. Thus, we limit the
degree of shocking to recover the authentic edge information at utmost.

The model of selecting the salient edge could be expressed as:

X ¼ /ðargminS Rp Sp � Ip
� �2 þ ks

Dx pð Þ
Lx pð Þþ e

þ Dy pð Þ
Ly pð Þþ e

� �
Þ ð13Þ

Where S denotes the salient edge image produced by applying additional RTV to
the intermediate image x; /ð�Þ represents the shocking filter; ks controls the degree of
smooth; rs is the scale size of the window; and X is the final salient edge image.

330 Y. Lin and W. Shao



3.3 Kernel Estimation

Many previous algorithms, including [9, 10, 12], employ a simple Gaussian prior to
estimate the kernel. They believe that it is of great efficiency to do so based on the
assumption that the latent image x estimation has guaranteed the accuracy of the model.
However, it is a misunderstanding that the prediction step is enough to reduce the noise
and ringing artifacts in the estimation process. Another group of people pointed out that
many kernels are highly non-Gaussian, they instead try to seek a mixture of sparse
priors to force the kernel to fit into the natural statistics, including [11, 13, 15, 21].
Among these algorithms, we find that the bi-L0-L2 method [11] is the most suitable
one where the sparse L0 prior and the Gaussian prior is imposed together on the kernel,
thus it can not only apply to the Gaussian kernel but also other circumstances.
Moreover, the blur kernel is estimated in the derivative domain, which is found useful
to suppress the noise.

Following [11], the blur kernel is estimated by solving

kiþ 1 ¼ argmink k k � xi � yk k2 þCi
kakð kk k0 þ

bk
ak

kk k2Þ ð14Þ

where 0 � i � Q − 1, Q is the inner iteration number; bk is a weight parameter; �k k0
denotes the L0-semi norm; and Ci

k\ 1 is a positive continuation factor which is fixed
as 4/5. Then k could be efficiently solved by OSAL in the same manner as x in (5)–(12).

To remove noise, we also impose a threshold on the kernel. Besides, we set
negative elements to zero and normalize the kernel. In addition to this, we compute the
connected components in the image to remove areas without enough components,
following the idea in [17].

4 Image Recovery

Once the kennel is estimated at the finest scale, the blind deconvolution turns into a
non-deconvolution. Numerious methods have been employed to address this classical
scheme. However, early algorithms like Richardson-Lucy (RL) and mixture of Gaus-
sians [1] are sensitive to kernel noise. We notice that the Hyper-Laplacian prior [4]
strikes a balance between accuracy and speed. It relies on heavy-tailed natural image
priors and look-up tables, which render it a comparative advantage over the other
non-blind deconvolution methods. The prior has then be adopted by many papers [8–
11, 21] afterwards. However, there is still some noise and artifacts left.

We employ a smoothness prior [22] developed from the Hyper-Laplacian prior [4].
The new prior makes use of the canny operator to locate the edges. Then it dilates the
detected edges with a disk model. The objective function is defined as (15):

minx k ki � x� yk k2 þ k1 rxk k0:5 �Mþ k2 rxk k2 � ðJ �MÞ ð15Þ

whererx ¼ ð@xx; @yxÞT is the gradient of the image x; k1 and k2 are the weights; J is an
all-ones matrix and M is a mask. The parameter setting follows the idea in [4, 22].
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5 Experimental Details and Results

In this section, we present the experimental evaluations of our proposed method on
both synthetic and real image datasets [5] compared with the state-of-the-art approa-
ches. All of our experiments are carried out on a laptop with an Intel i7-5500U
processer and 8 GB RAM. A 255 * 255 image takes about 2 min to process on Matlab.
In order to get better performance, we set the outer and inner iteration number to be 16
and 14 respectively at each scale. Moreover, k ¼ 100, ax ¼ 0:55, cx ¼ 200, r = 3 in
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Fig. 2. Quantitative comparison on the synthetic dataset [5]. Our method and Xu and Jia [13]
have a comparative advantage over the others on the SSIM and PSNR values.

Ours
06_fergus

09_cho
10_xu

11_krishnan
11_levin

12_whyte
13_sun

13_xu_uniform
13_zhang

13_zhong
14_michaeli

14_pan
14_perrone

-25 -20 -15 -10 -5 0
text saturated area face natural environment manmade

Fig. 3. Quantitative comparison on the synthetic dataset [5] measured by [6]. The larger value
represents better performance. Our method outperforms in all five categories.
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the intermittent image estimation. In the next stage of edge selection, the initial values
of rs and ks are set to 1.5 and 0.02, respectively. We then gradually enhance the
smooth effect by increasing them 1.1 times. Finally, we set ak = 0.25 in the kernel
estimation empirically.

Synthetic Images. We run our algorithm on the synthetic dataset [5]. It contains 25
images, divided into 5 categories including some particular circumstances such as
natural environment, text, face and saturation. We compare our SSIM and PSNR
results with Fergus et al. [1], Cho et al. [12], Xu and Jia [13], Krishnan et al. [8], Levin
et al. [2], Whyte et al. [15], Sun et al. [23], Xu et al. [9], Zhang et al. [24], Zhong et al.
[25], Michaeli and Irani [26], Pan et al. [10], and Perrone et al. [27]. The average PSNR
values are shown in Fig. 2.

Although SSIM and PSNR are the most popular metrics to measure a deblurring
method, it cannot always faithfully reflect the performance of the methods since
people’s eyes may have different feelings not matched with the value. To be more

       (a) Blurred Image         (b) Ground Truth                   (c) Xu and Jia [13] 

      (d) Krishnan et al. [8]                  (e) Levin et al. [2]                (f) Sun et al. [23] 

(g) Xu et al. [9]                      (h) Pan et al. [10]                           (i) Ours 

Fig. 4. Deblurred results of an image with saturated area. We showed the top 7 of all 14
methods. The metric’s [6] scores of (c)–(i) are −11.84, −12.01, −12.50, −12.13, −12.38, −11.74
and −10.09, respectively. (d) and (g) fail to accurately restore the image because of the saturated
area. (c), (e), (f) and (h) have varying degrees of ringing artifacts while ours gets superior result.
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specific, human visual system is influenced by many factors, for example, the sur-
rounding area will affect people’s evaluation on the target area. Thus, we adopt a
no-reference metric [6], which is learned based on a massive user study. It can score
image quality and artifacts consistently with human ratings. The results are illustrated
in Fig. 3.

It is clearly observed that all of the previous state-of-the-art methods could not be
considered as robust algorithms. There are always some scenarios where they perform
badly or just completely fail. However, the proposed method has achieved universally
better restoration performance across the five categories of images. Figures 4 and 5
demonstrate two examples, i.e., images with saturated area and text.

Real Images. Here we compare our method with the state-of-the-art algorithms on two
real photographs [5]. Figure 6 shows the deblurring results on the real photograph fish
for visual comparison. We can see that Fig. 6(d) and (h) have severe ringing artifacts.
Figure 6(b), (c) and (e) have a sense of smoothness in which details are blurry.
Comparatively, the results of Pan et al. [10] and our method are most visually pleasing.
Figure 7 shows another group of results which also demonstrates the comparative
performance of the proposed approach to other methods.

Fig. 5. Deblurred results of a text image. The left is the input blurry image; the middle and right
are cropped regions from the input. (a)–(h) are Xu and Jia [13], Krishnan et al. [8], Sun et al. [23],
Zhong et al. [25], Michaeli and Irani [26], Pan et al. [8], Perrone et al. [27], and Ours,
respectively. We can see that our text results have less artifacts and are easy to recognize.

(a) Blurred Image (b) Xu and Jia [13]   (c) Sun et al. [23]   (d) Zhang et al. [24]

(e) Zhong et al. [25]  (f) Pan et al. [10]  (h) Perrone et al. [27]  (i) Ours

Fig. 6. Deblurring results on the real photograph of fishes.
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6 Conclusion

In this paper, we propose a robust blind deconvolution approach with RTV as a
regularization penalty, which is easily solved by applying the OSAL (operator splitting
and the augmented Lagrangian) scheme. Extensive experiments on a challenging
synthetic dataset and real-world images as well are conducted to validate the new
approach with comparison against the state-of-the-art approaches from 2006 to 2014.
Based on both PSNR and SSIM and a non-reference evaluation metric, the results
demonstrate that the new approach is comparatively more effective to process blurred
images in more challenging cases including images with text, low illumination and
face.

Acknowledgement. The research was supported in part by the Natural Science Foundation
(NSF) of China (61771250, 61402239).

(a) Blurred Image         (b) Cho et al.  [12]          (c) Xu and Jia [13]

(d) Levin et al. [2]      (e) Xu et al. [9]               (f) Ours

Fig. 7. Deblurring results on the real photograph statue. As we can see from the details and the
estimated kernels, our algorithm has a superior performance over the state-of-the-art methods.
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